(著)山たー
よくよく調べたらPythonでも回帰分析をしてくれるライブラリがあった。勉強不足。
ソースコード
from sklearn.datasets import load_boston import statsmodels.api as sm #Boston Housing Dataをインポート boston = load_boston() X=boston.data y=boston.target n=X.shape[0] #サンプル数 p=X.shape[1] #説明変数の数 mod = sm.OLS(y, sm.add_constant(X)) res = mod.fit() print(res.summary())
結果
OLS Regression Results ============================================================================== Dep. Variable: y R-squared: 0.741 Model: OLS Adj. R-squared: 0.734 Method: Least Squares F-statistic: 108.1 Date: Fri, 20 Apr 2018 Prob (F-statistic): 6.95e-135 Time: 14:41:14 Log-Likelihood: -1498.8 No. Observations: 506 AIC: 3026. Df Residuals: 492 BIC: 3085. Df Model: 13 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 36.4911 5.104 7.149 0.000 26.462 46.520 x1 -0.1072 0.033 -3.276 0.001 -0.171 -0.043 x2 0.0464 0.014 3.380 0.001 0.019 0.073 x3 0.0209 0.061 0.339 0.735 -0.100 0.142 x4 2.6886 0.862 3.120 0.002 0.996 4.381 x5 -17.7958 3.821 -4.658 0.000 -25.302 -10.289 x6 3.8048 0.418 9.102 0.000 2.983 4.626 x7 0.0008 0.013 0.057 0.955 -0.025 0.027 x8 -1.4758 0.199 -7.398 0.000 -1.868 -1.084 x9 0.3057 0.066 4.608 0.000 0.175 0.436 x10 -0.0123 0.004 -3.278 0.001 -0.020 -0.005 x11 -0.9535 0.131 -7.287 0.000 -1.211 -0.696 x12 0.0094 0.003 3.500 0.001 0.004 0.015 x13 -0.5255 0.051 -10.366 0.000 -0.625 -0.426 ============================================================================== Omnibus: 178.029 Durbin-Watson: 1.078 Prob(Omnibus): 0.000 Jarque-Bera (JB): 782.015 Skew: 1.521 Prob(JB): 1.54e-170 Kurtosis: 8.276 Cond. No. 1.51e+04 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.
コメントをお書きください